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Abstract 

We present a highly simplified model of an electromagnetic rail gun. The 
energy source for the gun consists of a rotating magnetic dipole moment 
positioned at the center of a stator coil. The dipole moment is free to ro- 
tate about an axis normal to the stator coil's axis, inducing a current in the 
rail gun stator circuit, and thereby propelling the projectile. The system's 
dynamical behavior is described by three nonlinear coupled ordinary differ- 
ential equations, involving time-dependent functions representing the arma- 
ture's position, the stator circuit's current, and the dipole moment's angular 
position. We numerically solve this system of differential equations and plot 
the solutions versus time. The results exhibit a complicated dynamics due to 
the interaction of the electrical and mechnical degrees of freedom. 
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1.    Introduction 

The electromagnetic rail gun (EMRG) has been proposed as a viable technol- 
ogy for launching projectiles at speeds over 2500 m/s. A small-scale EMRG 
was reported a number of years ago [1]; however, the physics of the propul- 
sion mechanism was sufficiently complex that it was still being discussed in 
the literature 10 years later [2-4]. 

For nearly a decade, the Army has pursued the development of a larger 
EMRG for applications in armored vehicles (for a review of this work, see 
McCorkle [5]). Recently, the technical feasibility of developing a full-scale 
EMRG, capable of launching a 6-kg projectile, has been questioned at a 
fundamental level [5] by the Technical Director of the Missile Command 
(MICOM), W. C. McCorkle.* We have attempted to assess the merits of 
issues raised in McCorkle's critique, and in so doing, have found it useful to 
construct a simplified model of the EMRG. The purpose of this report is to 
document this work. 

In the following, we formulate a pedagogical model of an EMRG. The purpose 
of the model is to provide a simple context within which the basic operating 
principles of an EMRG can be studied, without many of the complications 
of the real system. Such a model is useful because it permits us to develop 
an intuition for much of the physics involved in the real EMRG. 

The essence of our EMRG model is a rotating magnetic dipole, which con- 
stitutes the system's rotor. This magnetic dipole is inductively coupled to 
the stator coil that feeds current into the rails of the EMRG. The model is 
described by three coupled nonlinear ordinary differential equations in time. 
In section 1, we describe our simplified model of the EMRG. In section 2, we 
derive the dynamical equations that govern the time evolution of the EMRG 
system. In section 3, we numerically solve these equations, for two different 
initial conditions. Finally, we summarize our conclusions in section 4. 

The delivered energy density is believed to decrease with increasing total machine 
weight, assuming that the rail gun length is constant. This constraint is a requirement 
for applications in armored vehicles. The total machine weight is taken to be the power 
supply, electronics, and all supporting mechanical equipment. 
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2.    The Model 

Figure 1 shows a schematic representation of a simplified EMRG. Our concep- 
tual model of the EMRG consists of a rotating hard magnet with a magnetic 
moment M located at the center of a fixed stator coil. The moment is free to 
rotate about an axis normal to the stator coil's symmetry axis. This rotat- 
ing magnetic moment plays the role of the field windings on the rotor that 
is used to power the EMRG. The rotating magnetic moment M induces an 
electromotive force (emf) in the surrounding stator coil (single turn), which 
has an area A = ira2, where a is the coil's radius. We call the axis of the 
stator coil the z-axis, and assume that the magnetic moment M has a large 
mechanical moment of inertia X about an axis perpendicular to this 2-axis. 
At times t < 0, the rotor (magnetic moment) has a large angular velocity 
d8/dt = u) — u!0, and we assume that the stator circuit is open so that there is 
zero current in the stator circuit, / = 0. At t = 0, we close the stator circuit, 
and the induced emf creates a current I for times t > 0. The current / in the 
stator circuit, as shown in figure 1, creates a magnetic field B perpendicular 
to the plane of the paper. The railgun armature, shown as the black bar 
in figure 1, conducts the current /, and is free to move in the x-direction. 
This armature is in physical contact with the projectile, accelerating it from 
its initial position at the breech of the gun's barrel to its muzzle. By the 
Lorentz force law, a current element of length d\ in the armature experiences 
a magnetic force 

d¥ = Id\ x B. (1) 

The current / is, of course, coupled to the rotor with the magnetic moment 
M. The rotational kinetic energy of the rotor at t — 0 is the only energy 
stored in the system for times t < 0. For times t > 0, after the stator circuit 
switch is closed, some of this rotor kinetic energy goes into kinetic energy of 
the launch package (armature + projectile) of mass m, Joule heating of the 
stator circuit, and stored energy in the magnetic field of the stator circuit.* 

*The rotor kinetic energy also goes into radiative energy loss, since the rotating mag- 
netic moment produces a time-varying magnetic field. However, the power associated with 
this radiative loss is negligible for all rotational frequencies of interest. 



Figure 1. 
Schematic of       Ay 
electromagnetic 
rail gun model. 

L = L'x 

We now derive the differential equations that describe the dynamics of this 
system. We take the hard magnet to be a simple magnetic dipole moment M, 
located at the center of the stator coil. The BM field of this dipole moment 
is given by 

BM = 
4TT 

M + 3(M-r)r 
(2) 

where r is the vector from the point dipole M to the field point. The hard 
magnetic moment is intended to represent the effects of real currents in the 
generator's field windings. Since the field-winding circuit dynamics are not 
included in the present model, we assume that the hard magnet is turned 
on at some time before t = 0, and retains a constant magnetic moment for 
t > 0. Hence, for t > 0, M has the functional form 

M(t) = MQ(cos6{t) z + sm6(t) x), (3) 

where M0 is a constant, z and x are unit vectors, and 9{t) is the angular 
position of the dipole. At a given time t. the vector M makes an angle 9 with 
the 2-axis, which coincides with the axis of the stator coil. The magnetic field 
flux density passing though the plane of the stator coil (z = 0) is given by 

B M Z = 
ßo MQ cos 0 

4n       p3 (4) 
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where p2 = x2 + y2, and the center of the stator coil is taken to coincide with 
z = 0, the origin of coordinates in the x-y plane. The flux passing through the 
area occupied by the stator coil, given by p < a, is the integral of equation 
(4) over this region. This integral is divergent, because there is a Dirac delta 
function contribution that is missing from the expression for the dipole field 
given in equation (2). However, the total magnetic flux passing through the 
plane of the stator coil is $m + $ouj = 0, where $iri is the flux passing through 
the area occupied by the stator coil, and $out is the flux passing through the 
plane of the coil for p > a. Consequently, we can find the flux passing through 
the stator coil by integrating the flux density in equation (4) over the region 
p> a. We obtain 

PQMQ cos 9      , .,   4 
in = ^20 =       °   C0S  ' ^ 

where 

We assume that the stator coil has a self-inductance Ls and that there is 
a small resistance R in the stator circuit. The rails of the EMRG have a 
self-inductance 

L = L'x, (7) 

which depends on the position x of the launch package mass m. The param- 
eter V is the self-inductance per unit length of the rails. For two straight 
parallel rails of circular cross section, each of radius b, and separated by a 
distance h, we have the approximate form [6] 

*-£(l + 4X*g. (8, 

Note that L' is a geometrical constant that is independent of the launch 
package position x and time t. We ignore in this model the small increase in 
stator circuit resistance as x increases. 



3.    Derivation of the Dynamical Equations 

The EMRG consists of a magnetic moment M coupled inductively to the 
stator coil. The stator coil is coupled to the rails of the EMRG by the current 
I. We assume that the flux of the magnetic field due to the current / in the 
rails does not couple to the stator coil or to the magnetic moment M. Hence, 
the rails form an isolated magnetic system. 

Within the quasi-static approximation, we consider the free energy of the 
magnetic system [6] 

5T = -S8T + f H • SB dV, (9) 

where «S is the total entropy of the system, T is the temperature (assumed 
uniform), and the integration is over the volume where the fields are nonzero. 
The free energy T is the work that must be done on the system by external 
electromotive forces to set up the magnetic fields H and B. Assuming that all 
conductors and the surrounding medium in the EMRG have a linear relation 
between B and H, 

B = //H, (10) 

equation (9) can be integrated from an initial thermodynamic state 
RQ = (T, B = 0) to a final state R = (T, B). We obtain* 

T = T0(T) + \hMI2
M + LMSIMI + \LSI

2
 + ^L'xl2, (11) 

where !FQ{T) is the free energy T in state R0, which depends only on 
temperature. 

*When the linear assumption in equation (10) is made, with a temperature-independent 
permeability, the free energy T can be written as a sum of the work done to set up the 
magnetic system, plus a temperature-dependent constant ^(T). In this case, the currents 
in the system do not depend on the thermodynamic state; i.e., they do not depend on 
temperature. We can then neglect the constant •T-o(T') and speak of the energy of the 
system. We do this in the ensuing discussion. The resulting quantity, T — Fo(T), is then 
equal to the coenergy, W = Jv JR B • 5H dV. See, for example, Fitzgerald et al [7]. 



The second term represents the energy required to set up the hard magnetic 
moment M, in the absence of the other parts of the system. Here we treat the 
hard magnetic moment as a simple self-inductance LM carrying a current IM. 
Since we treat the magnetic moment as constant, the second term in equation 
(11) is a constant. The fourth term in equation (11) is the energy required 
to set up the magnetic field due to the current in the stator coil, /, in the 
absence of the rest of the system. 

The third term in equation (11) is the energy of interaction between the 
magnetic moment M and the stator coil. The interaction is given in terms 
of the mutual inductance LMs, which depends on the relative orientation of 
the magnetic moment and the stator coil. Consideration of the interaction of 
two circuits (one circuit representing the magnetic moment M and the other 
circuit representing the stator coil) allows us to write the interaction term as 

LMSIMI = +M • Bs = MQBS cos 6 = M0— cos 9. (12) 
2a 

The fifth term in equation (11) is the magnetic energy required to set up 
the magnetic field of the rails. Note that we have assumed that the rails are 
isolated magnetically from other parts of the system, so that there are no 
interaction terms in T between the rails and other parts of the system: i.e., 
the flux of the magnetic field from the rails does not couple to the stator coil 
or to the magnetic moment. 

The magnetic energy in equation (11) is a function of two currents, / and 
IM, and two coordinates, 6 and x. Derivatives of the energy with respect 
to the coordinates, at constant currents, give the generalized forces on the 
system [6]. Here, these derivatives give the force on the mass m and the 
torque on the magnetic moment: 

- ■ CSL 
The derivatives given in equations (13) and (14) lead to two dynamical 
equations, 

mx   =   -L'l2, (15) 

10   =   -^£/sin0. (16) 
2a v    ' 



The above two equations could be obtained directly from Newton's laws of 
motion and the Lorentz force, equation (1). 

The third dynamical equation comes from consideration of the electric fields 
in the stator circuit, in the presence of magnetic flux passing through the 
circuit. We derive Ohm's law for this circuit in the presence of a magnetic 
field. The externally induced emf in the stator cicuit, which does work on 
the circuit, is due to the external magnetic flux passing through this circuit, 
caused by the rotating magnetic moment M. The power dissipated in the 
stator circuit, £1, is given in terms of the externally induced emf S: 

"='*+£(^)+s(^)+5(7"4    <"> 
where L is given by equation (7). From equation (17), this externally induced 
emf is given by* 

£ = IR + Lsi + L' (xi + l-xl) + ^p. (18) 

On the other hand, the externally induced emf in the stator circuit is associ- 
ated with a nonconservative electric field E^, due to the changing field Bjif, 
where BM is the field of the magnetic moment given by equation (4). These 
fields are related by the Maxwell equation 

curl EM =-^- (19) 

The externally induced emf in the stator circuit can be written in terms of 
the line integral of F,M around the stator circuit, 

E   =   fEM.dl = -ftJBM-dS = -^ (20) 
=   kM0A8 sinO, (21) 

where $in is given by equation (5). 

The externally induced emf is not the total emf. The total emf is given by the line 
integral around the stator circuit, <f ~Etotai • dl, where Etota/ is the total nonconservative 
electric field in the stator circuit. The externally induced emf is the line integral of the 
electric field EM associated with the external magnetic flux through the stator circuit, 
due to the magnetic moment M. The electric field EM is related to the magnetic field BM 

of the magnetic moment by equation (19). 



Using the emf in equation (21) in equation (18), we obtain the third dynam- 
ical equation: 

/ 1        \ 777TT 
IR + LSI + V [xl + -xl) + —— - kM0 A 9 sin 6 = 0. (22) 

We can put equation (22) into a more symmetrical form by using equation 
(15) to eliminate x, giving the third dynamical equation as 

IR + LSI + L'(xl + xl) - kM0 A9sin0 = O. (23) 

Equations (15), (16), and (23) are a complete set of dynamical equations for 
the quantities x(t), I(t), and 0(t). These equations are nonlinear differential 
equations of second order in x(t) and 6(t) and first order in I(t). Conse- 
quently, as discussed above, we take the initial conditions to be 

(24) 

(25) 

(26) 

(27) 

(28) 

where UJQ is the initial angular velocity of the rotor at t = 0. 

The goal of the EMRG is to launch a projectile with as high a kinetic energy 
as possible, subject to certain constraints on the acceleration to prevent ma- 
terial failures. To this end, we want to maximize the transfer of the initial 
rotor energy, 

U0 = ^lul (29) 

into launch package kinetic energy, 

K0 = -mx2(tf), (30) 

where x2(tf) is the speed of the launch package at the gun's muzzle, where 
the time tj is given by x(tf) = Lg. Consequently, we want to maximize the 
quantity 

An K  _,,-  . .      . v=i£ = iAtf)> (31) 

7(0) = o, 
ar(O) = o, 
±(0) = o, 
8(0) = o, 
6(0) =    ^0, 



where the dimensionless quantities x and t are given by x = x/Lg, and 
t = cü0t/(2ir), with x' = dx/di. Equation (31) gives the fraction of rotor 
kinetic energy that is transferred into launch package kinetic energy. Solution 
of the system of differential equations in equations (15), (16), and (23) allows 
calculation of the dependence of 77 on system parameters. 



4.    Numerical Solution of the Differential Equations 

The nonlinear nature of the dynamical equations (15), (16), and (23) makes it 
unlikely that we can find a closed-form analytic solution. Therefore, we solve 
these equations numerically, subject to the initial conditions in equation (28). 

For convenience, we first rewrite equations (15), (16), and (23) in terms of 
dimensionless variables: 

£ = -r> (32) 

1  =   kM0Au0V 
(33) 

~6 = h (34) 

* = £'• (35) 
where Lg is the length of the railgun, and time is measured in units of 2TT/UJ0, 

which is the period of rotation of the rotor at t — 0. 

In terms of the dimensionless variables x, I, 6, and i. the dynamical equations 
(15), (16), and (23) become 

2Kx"-ßP   =   0, (36) 

7Ö" + /sin(27rö)   =   0, (37) 

I + a I'+ ß (x'I + x I') - 61 sm(2ir6)   =   0, (38) 

where the primes denote differentiation with respect to the dimensionless 
time, and the dimensionless parameters a, ß, 7, and K are defined as 

a   =   ^^ (39) 

-' = f ■ («) 
K   =   ^, (42) 
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Table 1. Values 
of dimensionless 
parameters. 

where UQ is the initial rotational kinetic energy of the rotor, 

1. 

2" 
U0 = -IUJQ, (43) 

and K0 is a characteristic kinetic energy associated with the linear translation 
of the launch package mass m: 

K0 = -m 
LgLÜQ 

2TT 
(44) 

In equation (42), EQ is a characteristic energy scale in the problem given by 

F       V° 27r 
(45) 

R cV 
where Vo is a characteristic emf induced in the stator circuit 

V0 = kM0Ato0. (46) 

Each of the dimensionless parameters a, ß, 7, and K has a simple physical 
interpretation. The parameter a is a measure of the ratio of the inductive 
time constant, Ls/R, to the initial (mechanical) rotation period of the rotor, 
27T/UQ. The parameter ß is a measure of the inductive time constant of the 
rails, L'Lg/R, to the initial rotation period of the rotor. The parameter 7 
is a measure of the initial rotational kinetic energy of the rotor, and the 
parameter K is proportional to the characteristic kinetic energy K0. 

We integrate equations (36) to (38) numerically using the values of a, ß, 7, 
and K given in table 1, and subject to the initial conditions in equation (28). 
Initially, the angular velocity of the rotor is u0. 

The (dimensionless) launch package position x is plotted as a function of 
(dimensionless) time t — o;0t/(27r) in figure 2. The i axis corresponds to 

Parameter Value 

a 0.36 

ß 0.36 

7 0.307 

K 0.0176 

11 
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Figure 2. Plot of 5 
position x(i) 45 
versus i for 
initial 
conditions „,     „ 
0(0) = 0 (solid    x 

curve) and 
0(0) = TT/2 " 
(dashed curve). 
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measuring time in periods of revolution at t — 0. The position x is generally 
an increasing function of time i, as expected. However, the plot starts out 
rather flat near t = 0, and at approximately i = 0.3, there is an upturn. The 
figure shows x versus t for two initial conditions: 6(0) = 0 (solid curve) and 
6(0) = 7r/2 (dashed curve). At any time t, for 6(0) = ir/2, the armature has 
not traveled as far as for 6(0) — 0. 

For t > 1.5, the dimensionless launch package position x appears to be a 
straight line on this scale; however, there is in fact a slight ripple, which shows 
up clearly in figure 3, which shows the dimensionless velocity of the launch 
package x'(i) plotted versus time i, for the initial conditions 6(0) = 0 (solid 
curve) and 6(0) = n/2 (dashed curve). This velocity plot clearly shows ripples 
associated with the acceleration of the launch package, which is proportional 
to I2 (see eq (15)). 

Unlike in some actual EMRG designs, in this model there is an alternating 
current in the stator coil induced by the magnetic moment. However, the 
(dimensionless) acceleration x(i)" is proportional to the square of the current 
I2, and hence there are no essential differences in the operating principles 
between ac and dc designs. Note, however, that if we want to maximize 
the velocity of the armature, we would choose to close the switch on the 
stator coil at a time that coincides with the 6 = 0 position of the rotor. The 
difference in the velocities of the armature for the initial conditions 6(0) = 0 
and 6(0) = TT/2 depends in a complicated way on the parameters in the 
problem. Furthermore, the armature containing the projectile cannot leave 
the gun muzzle (break the stator circuit) at an arbitrary time, since there 

12 



Figure 3. Plot of 
velocity x'(i) '■*- 
versus i for -i 
initial 
conditions 0.8 E- 
0(0) = 0 (solid    x' 
curve) and 
0(0) = TT/2 O.4 
(dashed curve). 

0.2 

0 

is typically a significant current in the stator circuit, and this would lead to 
arcing problems in practice. The requirement of zero stator current before 
the stator circuit is broken (or the switching of stator circuit current) is an 
additional constraint in a real EMRG system. 

The fraction of rotor kinetic energy that is transferred to the launch package, 
given by rj in equation (31), is 77 = 0.070 and 77 = 0.063, for the initial 
conditions 6(0) = 0 and 6(0) = TT/2, respectively, and time if = 3.0. However, 
the value of 77 depends in a complex way on the system parameters and on 
the precise choice of time if (see fig. 3). 

The (dimensionless) acceleration x"(i) versus i is shown in figure 4. Since 
the acceleration is proportional to the square of the current, the acceleration 
peaks at the peak magnitude of the current (see eq (15)). 

However, the peak in the stator current lags the emf induced in the stator 
circuit by a variable amount of phase through the ac cycle, in contrast to 
a simple steady-state inductive resistive circuit, where the current lags the 
voltage across the inductor by n/2. The emf induced in the stator circuit, £, 
given in equation (18), is given in dimensionless form by 

V(i) = — = I + aI' + ß (x'i + xT) (47) 

Figure 5 shows the voltage-current phase relations for the initial condition 
6(0) = 0. Note that closing the stator circuit switch at 6 = 0 corresponds to 
closing the switch at minimum voltage. The variable phase through the ac 
cycle between the current and the induced voltage is due to the particular 
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initial conditions and to the variable coupling of the stator circuit to the 
launch package mass as the mass m moves down the rails. The detailed 
phase relationship between the current and voltage depends in a sensitive 
way on the values of the parameters in the problem. 

A similar complicated phase relationship exists for the initial condition 9(0) = 
IT/2, which is shown in figure 6. 

During the firing of the EMRG. the kinetic energy of the rotor goes into 
the magnetic field energy of the stator circuit. Joule heating, and the kinetic 
energy of the launch package. Consequently, on average, the rotor kinetic 
energy decreases. However, this process is nontrivial. Figure 7 shows the 
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Figure 6. Plot of 
voltage V and 
current I(i) in 
stator circuit 
versus I, for 
initial condition 
0(0) = TT/2. 

Figure 7. Plot of -j , u , ,,,,,,,,,, 
rotor angular 
velocity 6'(i) 
versus i, for 
initial «y 
conditions Q' 
0(0) = 0 (solid 0.6 
curve) and Q.5 

0(0) = TT/2 

(dashed curve). 
0.3 

i ■ ■ ' ' i ■ ■ ■ ■ i ■ ■ ■ ■ i. 

angular velocity of the rotor for the two initial conditions, 9(0) = 0 and 
6(0) = TT/2. Consider the solid curve for initial condition 9(0) = 0. With 
increasing time, the rotor angular velocity initially decreases, then it increases 
(near i = 0.9), and again decreases. The increase in rotor angular velocity is a 
consequence of the coupling of the rotor to the stator circuit. During the shot, 
starting at t = 0, energy from the rotor is transferred to the stator circuit, 
thereby decreasing the rotor angular velocity. At approximately i = 0.6, 
some of the energy from the stator circuit is transferred back to the rotor, 
causing the rotor to speed up. The transfer of energy from the stator circuit 
back to the rotor occurs only for a short period of time, from approximately 
£=0.6 to £=0.9. At time i = 0.9, energy is again transferred from the rotor 
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to the stator circuit. The process continues with a decreasing amplitude of 
oscillation with time. 

The behavior of the system for the initial condition 6(0) = 7r/2 is similar to 
the behavior for the initial condition 0(0) = 0. However, for 6(0) = ir/2, the 
phase relationships are different, and the rotor has not lost as much energy 
for times later than i « 0.25. 

Figure 8 shows the angular acceleration of the rotor, which is proportional 
to the torque acting on the rotor. Clearly, the torques on the rotor have 
a complicated time dependence for both initial conditions considered. Such 
complex phase relationships must be carefully considered in the design of any 
practical EMRG. 

Figure 8. Plot of 
rotor angular 
acceleration 
6"(i) versus i, 
for initial 
conditions 
0(0) = 0 (solid 
curve) and 
0(0) = 7I-/2 
(dashed curve). 
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5.    Conclusions 

We have solved the dynamical equations (15), (16), and (23) for several dif- 
ferent initial conditions (in addition to the ones discussed above) and with 
different values of the parameters. We have found that the dynamical behav- 
ior of the system can be very complex. In particular, the maximum current 
depends not only on the position of the rotor when the stator circuit switch 
is closed, but also on values of the stator circuit's resistance and inductance. 
Furthermore, the velocity of the launch package depends in a complicated 
way on the actual parameters in the problem. Consequently, it will also be 
profoundly affected by the characteristics of the field winding circuit, which 
was not included in our simplified model. In order to approach more closely 
the performance of a real EMRG, we are presently analyzing a model of 
an EMRG that includes a primary circuit. We will report our results and 
conclusions from that analysis in a future report. 
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